18 research outputs found

    The Structure and Dynamics of Schools and Business: Do They Face Similar Issues?

    Get PDF
    The main aims of the report are to: (1) gain a better understanding of key economic forces shaping choices available to schools; (2) build up our practical knowledge of how other organisations deal with the kinds of issues facing schools; and (3) bridge the gap between the view that economics has nothing useful to say about how to organise education and the view that education is just another business and should be treated as such. The report draws on analogies from the business world to highlight parallels between the operating environment facing schools and businesses. It also identifies some important features of schooling which do not have a strong parallel in the business world, which suggests care needs to be taken not to draw too much from any individual example.

    The supermassive black hole mass - S\'ersic index relations for bulges and elliptical galaxies

    Full text link
    Scaling relations between supermassive black hole mass, M_BH, and host galaxy properties are a powerful instrument for studying their coevolution. A complete picture involving all of the black hole scaling relations, in which each relation is consistent with the others, is necessary to fully understand the black hole-galaxy connection. The relation between M_BH and the central light concentration of the surrounding bulge, quantified by the S\'ersic index n, may be one of the simplest and strongest such relations, requiring only uncalibrated galaxy images. We have conducted a census of literature S\'ersic index measurements for a sample of 54 local galaxies with directly measured M_BH values. We find a clear M_BH - n relation, despite an appreciable level of scatter due to the heterogeneity of the data. Given the current M_BH - L_sph and the L_sph - n relations, we have additionally derived the expected M_BH - n relations, which are marginally consistent at the 2 sigma level with the observed relations. Elliptical galaxies and the bulges of disc galaxies are each expected to follow two distinct bent M_BH - n relations due to the S\'ersic/core-S\'ersic divide. For the same central light concentration, we predict that M_BH in the S\'ersic bulges of disc galaxies are an order magnitude higher than in S\'ersic elliptical galaxies if they follow the same M_BH - L_sph relation.Comment: 12 pages, 6 figures, 5 tables, accepted for publication in MNRA

    Scientific drilling projects in ancient lakes: integrating geological and biological histories

    Get PDF
    Sedimentary sequences in ancient or long-lived lakes can reach several thousands of meters in thickness and often provide an unrivalled perspective of the lake's regional climatic, environmental, and biological history. Over the last few years, deep drilling projects in ancient lakes became increasingly multi- and interdisciplinary, as, among others, seismological, sedimentological, biogeochemical, climatic, environmental, paleontological, and evolutionary information can be obtained from sediment cores. However, these multi- and interdisciplinary projects pose several challenges. The scientists involved typically approach problems from different scientific perspectives and backgrounds, and setting up the program requires clear communication and the alignment of interests. One of the most challenging tasks, besides the actual drilling operation, is to link diverse datasets with varying resolution, data quality, and age uncertainties to answer interdisciplinary questions synthetically and coherently. These problems are especially relevant when secondary data, i.e., datasets obtained independently of the drilling operation, are incorporated in analyses. Nonetheless, the inclusion of secondary information, such as isotopic data from fossils found in outcrops or genetic data from extant species, may help to achieve synthetic answers. Recent technological and methodological advances in paleolimnology are likely to increase the possibilities of integrating secondary information, e.g., through molecular dating of molecular phylogenies. Some of the new approaches have started to revolutionize scientific drilling in ancient lakes, but at the same time, they also add a new layer of complexity to the generation and analysis of sediment core data. The enhanced opportunities presented by new scientific approaches to study the paleolimnological history of these lakes, therefore, come at the expense of higher logistic, communication, and analytical efforts. Here we review types of data that can be obtained in ancient lake drilling projects and the analytical approaches that can be applied to empirically and statistically link diverse datasets for creating an integrative perspective on geological and biological data. In doing so, we highlight strengths and potential weaknesses of new methods and analyses, and provide recommendations for future interdisciplinary deep drilling projects
    corecore